63 research outputs found

    A Multi-scale View of the Emergent Complexity of Life: A Free-energy Proposal

    Get PDF
    We review some of the main implications of the free-energy principle (FEP) for the study of the self-organization of living systems – and how the FEP can help us to understand (and model) biotic self-organization across the many temporal and spatial scales over which life exists. In order to maintain its integrity as a bounded system, any biological system - from single cells to complex organisms and societies - has to limit the disorder or dispersion (i.e., the long-run entropy) of its constituent states. We review how this can be achieved by living systems that minimize their variational free energy. Variational free energy is an information theoretic construct, originally introduced into theoretical neuroscience and biology to explain perception, action, and learning. It has since been extended to explain the evolution, development, form, and function of entire organisms, providing a principled model of biotic self-organization and autopoiesis. It has provided insights into biological systems across spatiotemporal scales, ranging from microscales (e.g., sub- and multicellular dynamics), to intermediate scales (e.g., groups of interacting animals and culture), through to macroscale phenomena (the evolution of entire species). A crucial corollary of the FEP is that an organism just is (i.e., embodies or entails) an implicit model of its environment. As such, organisms come to embody causal relationships of their ecological niche, which, in turn, is influenced by their resulting behaviors. Crucially, free-energy minimization can be shown to be equivalent to the maximization of Bayesian model evidence. This allows us to cast natural selection in terms of Bayesian model selection, providing a robust theoretical account of how organisms come to match or accommodate the spatiotemporal complexity of their surrounding niche. In line with the theme of this volume; namely, biological complexity and self-organization, this chapter will examine a variational approach to self-organization across multiple dynamical scales

    Integrating Evolutionary, Cultural, and Computational Psychiatry: A Multilevel Systemic Approach

    Get PDF
    This paper proposes an integrative perspective on evolutionary, cultural and computational approaches to psychiatry. These three approaches attempt to frame mental disorders as multiscale entities and offer modes of explanations and modeling strategies that can inform clinical practice. Although each of these perspectives involves systemic thinking, each is limited in its ability to address the complex developmental trajectories and larger social systemic interactions that lead to mental disorders. Inspired by computational modeling in theoretical biology, this paper aims to integrate the modes of explanation offered by evolutionary, cultural and computational psychiatry in a multilevel systemic perspective. We apply the resulting Evolutionary, Cultural and Computational (ECC) model to Major Depressive Disorder (MDD) to illustrate how this integrative approach can guide research and practice in psychiatry

    Size-induced distortions in perceptual maps of visual space

    Get PDF
    In order to interact with our environment, the human brain constructs maps of visual space. The orderly mapping of external space across the retinal surface, termed retinotopy, is maintained at subsequent levels of visual cortical processing and underpins our capacity to make precise and reliable judgments about the relative location of objects around us. While these maps, at least in the visual system, support high precision judgments about the relative location of objects, they are prone to significant perceptual distortion. Here, we ask observers to estimate the separation of two visual stimuliVa spatial interval discrimination task. We show that large stimulus sizes require much greater separation in order to be perceived as having the same separation as small stimulus sizes. The relationship is linear, task independent, and unrelated to the perceived position of object edges. We also show that this type of spatial distortion is not restricted to the object itself but can also be revealed by changing the spatial scale of the background, while object size remains constant. These results indicate that fundamental spatial properties, such as retinal image size or the scale at which an object is analyzed, exert a marked influence on spatial coding

    Symptom dimensions of the psychotic symptom rating scales in psychosis: a multisite study

    Full text link
    The Psychotic Symptom Rating Scales (PSYRATS) is an instrument designed to quantify the severity of delusions and hallucinations and is typically used in research studies and clinical settings focusing on people with psychosis and schizophrenia. It is comprised of the auditory hallucinations (AHS) and delusions subscales (DS), but these subscales do not necessarily reflect the psychological constructs causing intercorrelation between clusters of scale items. Identification of these constructs is important in some clinical and research contexts because item clustering may be caused by underlying etiological processes of interest. Previous attempts to identify these constructs have produced conflicting results. In this study, we compiled PSYRATS data from 12 sites in 7 countries, comprising 711 participants for AHS and 520 for DS. We compared previously proposed and novel models of underlying constructs using structural equation modeling. For the AHS, a novel 4-dimensional model provided the best fit, with latent variables labeled Distress (negative content, distress, and control), Frequency (frequency, duration, and disruption), Attribution (location and origin of voices), and Loudness (loudness item only). For the DS, a 2-dimensional solution was confirmed, with latent variables labeled Distress (amount/intensity) and Frequency (preoccupation, conviction, and disruption). The within-AHS and within-DS dimension intercorrelations were higher than those between subscales, with the exception of the AHS and DS Distress dimensions, which produced a correlation that approached the range of the within-scale correlations. Recommendations are provided for integrating these underlying constructs into research and clinical applications of the PSYRATS

    Human Intelligence and Polymorphisms in the DNA Methyltransferase Genes Involved in Epigenetic Marking

    Get PDF
    Epigenetic mechanisms have been implicated in syndromes associated with mental impairment but little is known about the role of epigenetics in determining the normal variation in human intelligence. We measured polymorphisms in four DNA methyltransferases (DNMT1, DNMT3A, DNMT3B and DNMT3L) involved in epigenetic marking and related these to childhood and adult general intelligence in a population (n = 1542) consisting of two Scottish cohorts born in 1936 and residing in Lothian (n = 1075) or Aberdeen (n = 467). All subjects had taken the same test of intelligence at age 11yrs. The Lothian cohort took the test again at age 70yrs. The minor T allele of DNMT3L SNP 11330C>T (rs7354779) allele was associated with a higher standardised childhood intelligence score; greatest effect in the dominant analysis but also significant in the additive model (coefficient = 1.40additive; 95%CI 0.22,2.59; p = 0.020 and 1.99dominant; 95%CI 0.55,3.43; p = 0.007). The DNMT3L C allele was associated with an increased risk of being below average intelligence (OR 1.25additive; 95%CI 1.05,1.51; p = 0.011 and OR 1.37dominant; 95%CI 1.11,1.68; p = 0.003), and being in the lowest 40th (padditive = 0.009; pdominant = 0.002) and lowest 30th (padditive = 0.004; pdominant = 0.002) centiles for intelligence. After Bonferroni correction for the number variants tested the link between DNMT3L 11330C>T and childhood intelligence remained significant by linear regression and centile analysis; only the additive regression model was borderline significant. Adult intelligence was similarly linked to the DNMT3L variant but this analysis was limited by the numbers studied and nature of the test and the association was not significant after Bonferroni correction. We believe that the role of epigenetics in the normal variation in human intelligence merits further study and that this novel finding should be tested in other cohorts

    Clinical Utility of Random Anti–Tumor Necrosis Factor Drug–Level Testing and Measurement of Antidrug Antibodies on the Long-Term Treatment Response in Rheumatoid Arthritis

    Get PDF
    Objective: To investigate whether antidrug antibodies and/or drug non-trough levels predict the long-term treatment response in a large cohort of patients with rheumatoid arthritis (RA) treated with adalimumab or etanercept and to identify factors influencing antidrug antibody and drug levels to optimize future treatment decisions.  Methods: A total of 331 patients from an observational prospective cohort were selected (160 patients treated with adalimumab and 171 treated with etanercept). Antidrug antibody levels were measured by radioimmunoassay, and drug levels were measured by enzyme-linked immunosorbent assay in 835 serial serum samples obtained 3, 6, and 12 months after initiation of therapy. The association between antidrug antibodies and drug non-trough levels and the treatment response (change in the Disease Activity Score in 28 joints) was evaluated.  Results: Among patients who completed 12 months of followup, antidrug antibodies were detected in 24.8% of those receiving adalimumab (31 of 125) and in none of those receiving etanercept. At 3 months, antidrug antibody formation and low adalimumab levels were significant predictors of no response according to the European League Against Rheumatism (EULAR) criteria at 12 months (area under the receiver operating characteristic curve 0.71 [95% confidence interval (95% CI) 0.57, 0.85]). Antidrug antibody–positive patients received lower median dosages of methotrexate compared with antidrug antibody–negative patients (15 mg/week versus 20 mg/week; P = 0.01) and had a longer disease duration (14.0 versus 7.7 years; P = 0.03). The adalimumab level was the best predictor of change in the DAS28 at 12 months, after adjustment for confounders (regression coefficient 0.060 [95% CI 0.015, 0.10], P = 0.009). Etanercept levels were associated with the EULAR response at 12 months (regression coefficient 0.088 [95% CI 0.019, 0.16], P = 0.012); however, this difference was not significant after adjustment. A body mass index of ≥30 kg/m2 and poor adherence were associated with lower drug levels.  Conclusion: Pharmacologic testing in anti–tumor necrosis factor–treated patients is clinically useful even in the absence of trough levels. At 3 months, antidrug antibodies and low adalimumab levels are significant predictors of no response according to the EULAR criteria at 12 months

    No effect of feedback, level of processing or stimulus presentation protocol on perceptual learning when easy and difficult trials are interleaved

    Get PDF
    The role of feedback during training is a topic of great theoretical importance in perceptual learning. Feedback can be provided externally by the environment or internally by the observer. In order to evaluate the effectiveness of learning with internal versus external feedback, we performed a large multi-level experiment, varying the type of training task (Motion or Form), the level of processing (Local or Global), the presence of feedback (With or Without) and finally the method of stimulus presentation (Adaptive staircase or Method of constant stimuli). 140 participants were randomly assigned to one of ten groups and undertook 3 days of training in one condition only. Detection thresholds were measured daily before and after training with a pre- and post-assessment. A 75% detection threshold was calculated and used to estimate that day’s training levels (65% and 85% accuracy for difficult and easy trials respectively). The group trained with MOCS were presented with predefined randomly interleaved easy and difficult trials ranging from 50% to 95% stimulus intensity. Our findings indicate that improvement was generally robust across training-tasks, processing levels and feedback conditions. This suggests that internal reinforcement is as effective as external feedback in a discrete-noise-paradigm for local and global tasks when easy and difficult trials are interleaved
    • …
    corecore